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NUMERICAL STUDIES OF SLOW VISCOUS ROTATING 
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Department of Mathematics, Indian Institute of Technology, Madras 600036, India 

SUMMARY 
The flow of steady incompressible viscous fluid rotating about the z-axis with angular velocity o and moving 
with velocity u past a sphere of radius a which is kept fixed at the origin is investigated by means of a 
numerical method for small values of the Reynolds number Re,. The Navier-Stokes equations governing the 
axisymmetric flaw can be written as three coupled non-linear partial differential equations for the 
streamfunction, vorticity and rotational velocity component. Central differences are applied to the partial 
differential equations for solution by the Peaceman-Rachford AD1 method, and the resulting algebraic 
equations are solved by the ‘method of sweeps’. 

The results obtained by solving the non-linear partial differential equations are compared with the results 
obtained by linearizing the equations for very small values of Re,. Streamlines are plotted for $ =005,@2.05 
for both linear and non-linear cases. The magnitude of the vorticity vector near the body, i.e. at 2=02 ,  is 
plotted for Re,=0*05, 024, 05. The correction to the Stokes drag as a result of rotation of the fluid is 
calculated. 
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1. INTRODUCTION 

Several different two-dimensional finite difference schemes can be used to approximate the 
Navier-Stokes equations, depending on the boundary conditions, and these schemes vary 
considerably in accuracy and efficiency. Central differences can be used to approximate non-linear 
terms, but difficulty may then be encountered in solving the finite difference equations by iterative 
techniques, which may fail to converge unless under-relaxation is used, particularly for high 
Reynolds numbers. Upwind and downwind differences are used in approximating non-linear 
terms. Such approximation improves the convergence of iterative procedures of solution, but they 
are only first-order accurate. The convergence is improved because the matrices associated with 
the finite difference equations are diagonally dominant. Numerical calculations were performed 
by Dennies et d.’ using a two-dimensional specialized finite difference scheme and series 
truncation method. The calculations were carried out with grid sizes of n/30 and n/60 in the 
angular direction, and in the radial direction a grid size as small as 001 was used. The 
Gauss-Seidel iterative method was used in all the iterative procedures without under-relaxation. 
The starting values were taken as the results for T=O computed by Dennis and Ingham.’ 

In this paper, the flow of steady incompressible viscous fluid rotating about the z-axis with 
angular velocity o and moving with velocity u along the z-axis past a sphere is considered. For 
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small values of Re,, the linear and non-linear problems are equivalent. Both these cases are solved 
by the Peaceman-Rachford AD1 method. The starting values for $ and 0 are taken as zero. The 
streamlines are drawn for Re, = 0.05,0*24, 0.5 and the effects of rotation on the Stokes drag for 
both linear and non-linear cases are compared. The magnitudes of the vorticity vector at z =0.2 for 
both cases are drawn and compared. 

2. FORMULATION OF THE PROBLEM 

We consider a steady slow viscous fluid which is in solid body rotation with angular velocity w 
about the z-axis and moves with uniform velocity u along the z-direction. A sphere of radius a is 
introduced in the flow and kept fixed at the origin. We use spherical polar co-ordinates ( I ,  8, 4); 
since the motion is axially symmetric, all quantities are independent of $. If the transformation 
r = ez is used, the Navier-Stokes equations can be expressed in the form 

D2$= -e3'6 s ine= -eZZil ,  (1) 

D i -  2 Reme-' . - - [ ( - - - - 3 ] + 2 (  a$ ai l  a$ ay 
sine ae aZ a Z  ae 

Reme-' (all/ an a$ an) 
sine ae a2 aZ ae ' 

DZQ=- _-___ (3) 

where 

Here $, !J and il are the dimensionless streamfunction, the rotational velocity component and the 
vorticity respectively. The non-dimensional variables are 

r = r'la, Re = Ga3/v,  C =  2awlv. 

The velocity components are given by 

e-" a$ 
Do=-.- 

sin e az ' 
e-2z a$ 

v,=.- 
sln8 ae' 

Equations (1)-(3) are to be solved with the following boundary conditions: 

for sufficiently large distances, i I) -(1/2)e2' sin2e 
n-(C/2)e2' sin'e 

I 
$ = O  for 8=0, 180"-axis of symmetry, 

= 0 for 0 = 0, 180"-axis of symmetry, 

i -0 at sufficiently large distances. 

The condition for i at the surface of the sphere comes out of d$/az=O. 

( 5 )  

3. FINITE DIFFERENCE EQUATIONS 

Central differences of order hZ and k 2  are written for equations (1H3) and the boundary 
conditions (4H8). This is explained in detail in Reference 3 and is not repeated here. The finite 
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difference boundary conditions are 

(9) Ro,j=I),,j=(aI)/az),,j=O on z=O (sphere) 

A sufficiently large distance is taken as e2, i.e. zN=2. Thus 

~ , , ~ w ( ~ / 2 ) e ~ s i n ~ 8 ~  
1),,~-(1/2)e~ sin2Bj 

C l N , j  

The three coupled equations (1H3) with the boundary conditions (9H11) are solved using the 
Peaceman-Rachford AD1 method. In this method, to ensure diagonal dominance we choose the 
acceleration parameter p as follows: 

p = 30 for iterations 1-5, 
p = 30 for iterations 6-1 1, 
p = 110 for iterations 12-21, 
p =  130 for iterations 22-31. 

The numbers of iterations required to ensure convergence are given in Table I. 
The procedure adopted is as follows. 

The starting values of $, C l  and R are taken as zero. 
The equation for R is iterated 15 times. The final value of R is taken as the initial value for 
further computation. 
The final R-value computed in step (ii) is used in the equation for Cl,  which is iterated 
15 times. The final value of C l  is taken as the initial value for further computation. 
The final C,-value computed in step (iii) is used in the equation for JI. The value of JI 
computed serves as the initial value for further computation. 

This process had to be repeated six times for two successive iterated R-values to be convergent; for 
this, steps (ii) and (iii) had to be repeated 16 times to ensure convergence. 

There is a good coincidence between horizontal and vertical sweeps at the point (zi,Oj), 
i ,  j =  1, 2, . . . , 9. A computer program for the Peaceman-Rachford AD1 method has been 
developed on the IBM 370/155. The resulting algebraic equations are solved by the ‘method of 
sweeps’ by dividing them into nine blocks, each of which is a tridiagonal system. 

The method of solving is introduced as four subroutines in the computer programs developed. 
The first three subroutines are for JI, C l  and R; the fourth subroutine is introduced for the ‘method 
of sweeps’. 

Table I 

Number of 
Equation iterations 

0 
15 
15 
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4. DISCUSSION OF RESULTS 

For small Reynolds numbers, the linear and non-linear problems represent the same flow and 
hence comparison is made between the two cases. For Re,=O05, 0.24 and 0.5 the effects of 
rotation on the Stokes drag Ds for the linear and non-linear problems are given in Table 11. 

The drag on the sphere is given by the formula 

( 2 u,+- sin8 e2'sin0de at z=O, D = 3 \ : [ (  -p+2e-'- cose- e-'-- 
3 a2 ae . 1 

Table I1 

Relo Linear drag Non-linear drag 
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where 
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p = ~ ~ ( e - 2 z - F ) d 8  d2(ezo,) at z=O. 

D, is the drag for Stokes flow, D, = 6npau, and p is the dimensionless pressure in the fluid. It is seen 
that the effect of rotation is to increase the drag as Re, increases. 

The variations of the streamfunction in the linear and non-linear cases with increasing 8 for the 
values z=0.2, 0.8, 1.0, 1.8 and Re,=0*05, 0.24, 0.5 are plotted in Figures 1 4 .  

The magnitude of the vorticity vector for z =0*2 with increasing 8 is plotted in Figure 5 in the 
linear and non-linear cases. The magnitude of the vorticity vector is d(t2 + q2 + c2), where 

The streamlines + =0*05,0.2,03 for Re,=0.05,0.24,0-5 in the linear and non-linear cases are 
plotted in Figure 6. 
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--- Linear - Non-linear 

Fig. 6. Streamlines for ‘method of sweeps’ 
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